If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17y^2-17=0
a = 17; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·17·(-17)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34}{2*17}=\frac{-34}{34} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34}{2*17}=\frac{34}{34} =1 $
| -20-7n=2-5n | | X^3+2x-3x-10=0 | | -20-2q=-4q | | 3k+17=-19-3k | | A-20-16=20-7s | | 2x-2=-7x+34 | | 7w=18+6w | | 7w=18+6 | | -19.1n+16.96=-5.6n+14.72-13.7n | | 67/10-4-x=-5 | | 2(w-8)=20 | | 20-15z=-z-13z+5 | | 2j-8=12j+12 | | -9g+19=-12g-20 | | 15x-30+115=180 | | 4u+10=2u | | -2k-10=7k+10-5k | | 1-9s=-10s+9 | | 10-3j-10=-5j-10 | | 6/4-x=-2/5 | | F-10=10-4f | | 6/5-x=-2/5 | | -9-4p=5p | | 8-9b=-10b | | x-25-(2+3/7)=-2/5 | | 8+3x=-4x-41 | | -4(p+2)+8=2(p-1)-70+15 | | x-25-(2+(3/7))=-2/5 | | 33+16+(-9)+x=-2/5 | | x/26=-5 | | x/43=-5 | | 0=7x-5x-4 |